Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots

نویسندگان

  • Robert C Page
  • Daniel Espinobarro-Velazquez
  • Marina A Leontiadou
  • Charles Smith
  • Edward A Lewis
  • Sarah J Haigh
  • Chen Li
  • Hanna Radtke
  • Atip Pengpad
  • Federica Bondino
  • Elena Magnano
  • Igor Pis
  • Wendy R Flavell
  • Paul O'Brien
  • David J Binks
چکیده

Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. This process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties

Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...

متن کامل

A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzym...

متن کامل

Ultrafast Charge Dynamics in Trap‐Free and Surface‐Trapping Colloidal Quantum Dots

Ultrafast transient absorption spectroscopy is used to study subnanosecond charge dynamics in CdTe colloidal quantum dots. After treatment with chloride ions, these can become free of surface traps that produce nonradiative recombination. A comparison between these dots and the same dots before treatment enables new insights into the effect of surface trapping on ultrafast charge dynamics. The ...

متن کامل

Effect of Chloride Passivation on Recombination Dynamics in CdTe Colloidal Quantum Dots

Colloidal quantum dots (CQDs) can be used in conjunction with organic charge-transporting layers to produce light-emitting diodes, solar cells and other devices. The efficacy of CQDs in these applications is reduced by the non-radiative recombination associated with surface traps. Here we investigate the effect on the recombination dynamics in CdTe CQDs of the passivation of these surface traps...

متن کامل

Photoluminescence upconversion in colloidal CdTe quantum dots

Efficient photoluminescence ~PL! up-conversion has been observed in colloidal CdTe quantum dots with an energy gain of as high as 360 meV. Compared with the normal PL, the peak energy of this up-converted PL ~UCPL! shows a redshift of about 80 meV, and the corresponding radiative lifetime becomes nearly twice as long. This UCPL is attributed to the carrier recombination involving surface states...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015